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Abstract
Quantum mechanics of a linear harmonic oscillator in a finite-dimensional
Hilbert space satisfying the correct equations of motion is studied. The
connections to Weyl’s formulation of the algebra of bounded unitary operators
in finite space as well as to a truncated quantized linear harmonic oscillator are
discussed. It is pointed out that the discrete Fourier transformation (DFT) plays
a central role in determining the actual form of the position, the momentum, the
number and the Hamiltonian operators. The explicit form of these operators in
different bases is exhibited for some low values of the dimension of the Hilbert
space. In this formulation, it is shown that the Hamiltonian is indeed the
logarithm of the DFT and that by modifying Weyl’s framework to include
position and momentum operators with non-uniformly spaced spectra the
equations of motion are satisfied.

PACS number: 03.65.−w

1. Introduction

Quantum mechanics normally deals with an infinite-dimensional Hilbert space where the
self-adjoint position and momentum operators satisfy Heisenberg’s canonical commutation
relation (CCR). Quantum mechanics in finite dimensions has been found to have very important
applications in quantum computing and quantum optics [12, 13]. In a finite-dimensional
Hilbert space it is known that CCR cannot hold. A formulation of quantum mechanics in
finite dimensions was given some years back, based on Weyl’s algebra of bounded unitary

3 This work was done while this author was on sabbatical leave at the Center for Signal and Image Processing,
Georgia Institute of Technology, Atlanta, Georgia, during the Spring of 2007.
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operators, where the analog of CCR was worked out. It was soon understood that when the
CCR framework was applied to a linear harmonic oscillator in finite dimensions, the equations
of motion became inconsistent for dimensions n > 3. An alternate formulation of a harmonic
oscillator in finite space was to truncate the number spectrum of the oscillator.

In Weyl’s form, quantum mechanics in a finite-dimensional Hilbert space is built from
unitary rotations in ray space [4]. The impetus for this, however, is quantum kinematics
furnished by the basic canonical commutation relation of Heisenberg and Dirac [1] and is
obtained by exponentiation of the self-adjoint position and momentum operators. However,
quantum dynamics requires the knowledge of the Hamiltonian and the equations of motion.
Generally, as showed by Wigner [11], equations of motion will be consistent with even more
general forms of the canonical commutation relation.

In this paper, we study the quantum harmonic oscillator in a finite-dimensional Hilbert
space. In this case, the Hamiltonian operator has an equally spaced spectrum and thus
commutes with the DFT. The main result is to show Weyl’s commutation relation, unless
modified to account for not-equally spaced distribution of the spectrum of the position and
momentum operators, is not consistent with the equations of motion except for dimensions
n = 2, 3 of the Hilbert space. The truncated spectrum of the number, position and momentum
operators are used to demonstrate this. As is known [7], the spectrum of the truncated position
operator consists of the zeros of the Hermite polynomials (not equally spaced except for
dimensions 2 and 3). This resulted in the inconsistency of Weyl’s form for n > 3 [6].

2. Standard quantum harmonic oscillator

In quantum mechanics, the harmonic oscillator obeys the equations of motion given by

[H, q̂] = −ip̂, [H, p̂] = iq̂, (1)

where p̂ and q̂ are the self-adjoint position and momentum operators satisfying the CCR:

[q, p] = iI, (2)

and the Hamiltonian operator H is given by

H = p̂2 + q̂2

2
. (3)

H is in turn related to the number operator through

H = N + 1
2 . (4)

The bases of the unbounded p̂ and q̂ operators are related through the Fourier transform via

|p〉 = 1√
2π

∫ ∞

−∞
exp(−iqp)|q〉 dq = F(|q〉). (5)

As is known the Fourier transform F satisfies the relations:

F2|q〉 = −|q〉, F4|q〉 = |q〉. (6)

In view of these involutional properties, the Fourier transform satisfies the remarkable relation:

F = exp

(
iπ

2
N

)
= exp

(
iπ

4
(p̂2 + q̂2 + i[q̂, p̂])

)
. (7)

The eigenfunctions of the Hamiltonian H are the Gauss–Hermite functions defined by

ψn(q) = 〈N |q〉 1

π1/4
√

2nn!
Hn(q) exp

(
−q2

2

)
, (8)
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where Hn(q) is the Hermite polynomial of order n. The number operator and the Fourier
operator are consequently connected through the logarithm:

N = −2i

π
logF . (9)

In the N-diagonal basis, the operator q̂ has the symmetric tridiagonal form:

q̂ = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 . . .

1 0
√

2 0 0 . . .

0
√

2 0
√

3 0 . . .

0 0
√

3 0
√

4 . . .

0 0 0
√

4 0
√

5 . . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

These concepts are part of any standard quantum mechanics textbook [1].

3. Harmonic oscillator in finite dimensions

In a finite-dimensional Hilbert space, q̂ and p̂ are finite-dimensional Hermitian matrices (we
use the same notation as in standard quantum mechanics), it is known that the CCR framework
does not apply. The question of interest is, how close one can approach the standard harmonic
oscillator that satisfies the equations of motion and the framework described in the previous
section. Earlier attempts consisted in truncating the form of q̂ in the N-diagonal form. The
other approach is to use the diagonal form for q̂ and use Weyl’s algebra [4]:

AB = εBA, ε = exp

(
i
2π

n

)
,

An = Bn = I, (11)

A = exp

(
i

√
2π

n
p̂

)
, B = exp

(
i

√
2π

n
q̂

)
.

When applied to the quantum harmonic oscillator, it was noted that for n > 3, the equations
of motion become inconsistent when the spectrum of q̂ is equally spaced. To analyze the
quantum harmonic oscillator in a finite-dimensional Hilbert space, we have the following:

Theorem. The first equation of motion given by

[N, q̂] = −ip̂

implies the second equation of motion:

[N, p̂] = iq̂,

if the following relations hold:

(i) [N, S] = 0,

(ii) p̂ = Sq̂SH ,

(iii) S2q̂S2 = −q̂,

(iv) S2p̂S2 = −p̂,

(12)

where S is the DFT matrix.
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Proof.

[N, q̂] = −ip̂ = −iSq̂SH .

Since S is unitary we have

SH [N, q̂]S = −iq̂.

Using (i) we have

[N, SH q̂S] = −iq̂.

But we have

SH q̂S = SH SH Sq̂SH SS = S2p̂S2 = −p̂

Hence it follows that

[N, p̂] = iq̂.

The problem thus boils down to solving for q̂ satisfying the equation:

[N, q̂] = −iSq̂SH . (13)

The particular form of q̂, however, is very sensitive to the basis chosen. If we choose N and S
to be diagonal, they have the form:

N = diag(0, 1, 2, . . . , n − 1), S = iN = exp

(
iπ

2
N

)
. (14)

We can now solve for q̂ satisfying equation (13) as follows:

Nrs = (r + (n − 1)/2)δrs

Srs = exp

(
iπ

2
Nrs

)
, |r| � (n − 1)/2 (15)

q̂rs[(r − s) + ir−s+1] = 0 ⇒ (r − s) = ±1.

This specifically implies that the operator q̂ would have a tridiagonal form in the N and S
diagonal basis. The eigenvalues of q̂ are thus related to the zeroes of special functions. In
particular, if we require N to have the form:

N = 1
2 (p̂2 + q̂2 + i[q̂, p̂]) (16)

then the eigenvalues of q̂ are the zeroes of the Hermite polynomials and q̂ and p̂ have the
truncated form given by

q̂ = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 . . .

1 0
√

2 0 0 . . .

0
√

2 0
√

3 0 . . .

0 0
√

3 0
√

4 . . .

0 0 0
√

4 0
√

5 . . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

p̂ = −i√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 . . .

−1 0
√

2 0 0 . . .

0 −√
2 0

√
3 0 . . .

0 0 −√
3 0

√
4 . . .

0 0 0 −√
4 0

√
5 . . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)
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which is just the truncated form of p̂, q̂ from the standard harmonic oscillator. The zeros of the
Hermite polynomials are not equally spaced except for n = 2, 3. The equations of motion and
other properties except, of course, for the CCR are obeyed. A change of basis will not affect
the equations of motion and the particular forms of the operators involved will be different. We
give the forms of these matrices in three different basis: (a) N diagonal, (b) S-centralized and
(c) q̂ diagonal scenarios. To proceed from the N diagonal to the S centralized basis we require
the matrix of eigenvectors of S. As is known [9], the analytic form for the eigenvectors of S
is not known. We present in the following section the form of these matrices for n = 3, 4, 5.
For the purposes of analysis, we define the centralized DFT [9] as

S(c)
rs ≡ 1√

n
exp

(
−i

2π

n
rs

)
= USdiagUH , |r, s| � n − 1

2
, (18)

where U is the matrix of eigenvectors of S(c) and Sdiag = diag(1, i, i2, . . . , in). �

4. Form of the operators in q̂-diagonal basis

(1) For n = 3 we have

q̂d =
√

3

2
diag(−1, 0, 1)

�3 = Sq-diag = 1

6

⎛
⎝−1 + 3i 4 −1 − 3i

4 2 4
−1 − 3i 4 −1 + 3i

⎞
⎠

M3 = 1

6

⎛
⎝ 7 −4 1

−4 4 −4
1 −4 7

⎞
⎠ .

(2) For n = 4 we have

q̂d = diag (−1.651,−0.525, 0.525, 1.651)︸ ︷︷ ︸
Zeroes of H4

�4 =

⎛
⎜⎜⎝

−0.488 0.288 + 0.5i −0.288 + 0.5i −0.408
0.288 + 0.5i 0.488 −0.408 0.288 − 0.5i

−0.288 + 0.5i −0.408 0.488 −0.288 − 0.5i
−0.408 0.288 − 0.5i −0.288 − 0.5i −0.488

⎞
⎟⎟⎠

M4 =

⎛
⎜⎜⎝

1.908 −0.788 −0.212 −0.092
−0.788 1.092 0.908 0.212
−0.212 0.908 1.092 0.788
−0.092 0.212 0.788 1.908

⎞
⎟⎟⎠ .

(3) For n = 5 we have

q̂d = diag (−2.02,−0.959, 0, 0.959, 2.02)︸ ︷︷ ︸
Zeros of H5

M5 =

⎛
⎜⎜⎜⎜⎝

2.694 −0.887 0.245 0.113 0.061
−0.887 1.639 −1.088 −0.272 −0.113
0.245 −1.088 1.333 1.088 0.245
0.113 −0.272 1.088 1.639 0.887
0.061 −0.113 0.245 0.887 2.694

⎞
⎟⎟⎟⎟⎠ .
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It can be easily verified that all the equations of motion are satisfied and that the
Hamiltonian has the same structure as for the standard harmonic oscillator and is indeed
the logarithm of the DFT. For the equations of motion to be satisfied in the q̂ diagonal basis,
the form of q̂ cannot have uniformly spaced elements since the basis change from the N-
diagonal basis is a similarity transformation. This fact is consistent with earlier results in
QFMD [5, 6], where the equations of motion were violated for n > 3, when the elements of q̂

were chosen to be equally spaced. Furthermore the form of the DFT in the q̂-diagonal basis
cannot be the centered version of the DFT used in [5, 6], but rather the similarity transformed
version of the diagonal version of the DFT in the N-diagonal basis, accomplished using the
eigenvectors of the tridiagonal q̂.

5. Centralized DFT basis

(1) For n = 3 we have

S = 1√
3

⎛
⎜⎝−0.5 + i

√
3

2 1 −0.5 − i
√

3
2

1 1 1

−0.5 − i
√

3
2 1 −0.5 + i

√
3

2

⎞
⎟⎠ .

q̂ =
⎛
⎝1.213 0.119 0

0.119 0 −0.119
0 −0.119 −1.213

⎞
⎠ .

N = I +
1

2
√

3

⎛
⎝ 1 −2 1

−2 −2 −2
1 −2 1

⎞
⎠ .

(2) For n = 4 we have

q̂ =

⎛
⎜⎜⎝

0.377 −1.037 0.561 0
−1.037 −0.282 0 −0.561
0.561 0 0.282 1.037

0 −0.561 1.037 −0.377

⎞
⎟⎟⎠

N =

⎛
⎜⎜⎝

2.153 −0.653 0.271 −0.229
−0.653 0.847 −0.771 0.271
0.271 −0.771 0.847 −0.653

−0.229 0.271 −0.653 2.153

⎞
⎟⎟⎠ .

(3) For n = 5 we have

q̂ =

⎛
⎜⎜⎜⎝

−0.721 − 0.079i 0.344 − 0.022i 1.007 − 0.07i 0.095 − 0.066i 0.022 + 0.079i
0.344 + 0.079i 0.819 − 0.045i −0.899 − 0.036i −0.011 −0.108 − 0.079i

0.981 −0.871 0 0.871 −0.981
0.108 + 0.079i 0.011 0.899 + 0.036i −0.819 + 0.045i −0.344 − 0.079i

−0.022 − 0.079i −0.095 + 0.066i −1.007 + 0.07i −0.344 + 0.022i 0.721 + 0.079i

⎞
⎟⎟⎟⎠

N =

⎛
⎜⎜⎜⎜⎝

1.787 0.044 − 0.151i −0.536 − 0.243i 0.569 − 0.151i −1.064
0.099 1.835 + 0.085i 1.004 + 0.138i 0.685 + 0.085i 0.624
−0.447 0.916 − 0.106i 2.757 − 0.171i 0.916 − 0.106i −0.447
0.624 0.685 + 0.085i 1.004 + 0.138i 1.835 + 0.085i 0.099
−1.064 0.569 − 0.151i −0.536 − 0.243i 0.044 − 0.151i 1.787

⎞
⎟⎟⎟⎟⎠ .
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As with the q̂-diagonal basis representation, it can be verified that the equations of motion
are satisfied and that the form of the Hamiltonian is invariant to the basis change. In the
earlier work on QMFD, the equations of motion were satisfied for n � 3, however, the number
operator did not have the desired form in equation (16).

6. Conclusions

Quantum mechanics of a linear harmonic oscillator in a finite-dimensional Hilbert space, where
the equations of motion are completely satisfied has been worked out. The inconsistencies in
the truncated form of the oscillator in the N (and hence S) diagonal form that were prevalent
in the Weyl’s form and in earlier attempts at the same can be traced back to (a) the fact that the
spectrum of the operator q̂ is not uniformly spaced in the q-diagonal basis, and (b) incorrect
use of the centralized DFT in the different bases. The equations of motion will still be satisfied
in any basis as long as the appropriate version of the DFT is used. If we prefer to retain
the form of the Hamiltonian, i.e., quadratic in the position and momentum operators in the
different representations, the corresponding q̂ has to be tridiagonal in the N-diagonal form and
its spectrum is simply the zeroes of the Hermite polynomials. With this framework the discrete
Hamiltonian maintains the same logarithmic connection to the DFT that the Gauss–Hermite
differential operator has with the Fourier operator F . The limiting process, where one desires
convergence to the second-order Gauss–Hermite differential operator, also holds well with
this framework.
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